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Abstract

Two new sets of scoring matrices are introduckd: for the protein sequence comparison andfor the protein
sequence—structure correlation. Each elemehtair T, measures the frequency with which a pair of amino acid types

in one protein, k-residues apart in the sequence, is aligned with another pair of residues, of given amino adit types

H,) or in given structural statd$or T,), in other structurally homologous proteins. There are four types, corresponding

to thek-values of 1 to 4, for botk, andT,. These matrices were set up using a large number of structurally homologous
protein pairs, with little sequence homology between the pair, that were recently generated using the structure com-
parison program SHEBA.

The two scoring matrices were incorporated into the main body of the sequence alignment program SSEARCH in the
FASTA package and tested in a fold recognition setting in which a set of 107 test sequences were aligned to each of a
panel of 3,539 domains that represent all known protein structures. Six procedures were tested; the straight Smith-
Waterman(SW) and FASTA procedures, which used the Blosum62 single residue type substitution matrix; BLAST and
PSI-BLAST procedures, which also used the Blosum62 matrix; PASH, which used Blosum&2, andtrices; and
PASSC, which used Blosum68,, and T, matrices. All procedures gave similar results when the probe and target
sequences had greater than 30% sequence identity. However, when the sequence identity was below 30%, a similar
structure could be found for more sequences using PASSC than using any other procedure. PASH and PSI-BLAST gave
the next best results.
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Protein sequences are usually aligned using a scoring scheme th&atv/alencia, 1997. These latter studies are mainly concerned with
measures the frequency of substitution of single amino acid resiresidue pairs that are in contact in three-dimensi¢88) struc-
dues(Dayhoff et al., 1978; Gonnet et al., 1992; Henikoff & Heni- ture, but not necessarily close in sequence. In contrast, we will be
koff, 1992; Jones et al., 1992; Overington et al., 19%%re, we interested in this paper in using pairs of residues that are close
examine the effect of using the frequency of substitution of pairsogether in sequence so that their substitution frequencies may be
of residues at a time that are up to four residues apart in sequencased in conventional dynamic programming algorithms like those
The moativation for this exploration arises from the fact that, in for single residues. Gonnet et 81994 considered a score matrix
common structural motifs such as helices and beta strands, cloder substituting a consecutive pair of residues at a time. They
side-chain contacts are made between residues that are two, threeported some interesting properties of the resulting 40800
or four residues apart. matrix, but did not consider it to be useful in sequence compari-
The idea of using pairs of residues from each protein comparedons because the database available at the time was too small to
is not new. Nakayama et a{1988 and van Heel(1991) used adequately fill the large matrix. However, they expressed the hope
compositions of neighboring amino acid pairs to compare databasthat, as the size of the database expands, matrices of this type could
protein sequences. A large number of studies have been made de used with amino acid pairs that are 1, 2, 3, or 4 residues apart
correlated mutations in which a pair of residues are mutated siin the sequence. We report here the results of using just this kind
multaneously(Gobel et al., 1994; Neher, 1994; Shindyalov et al., of matrices, although somewhat differently normalized.
1994; Taylor & Hatrick, 1994; Chelvanayagam et al., 1997; Olmea To make the pair-by-pair comparisons, we prepared a set of four
400 X 400 (symmetri¢ matrices,H¥, wherek was the sequence
Reprint requests to: ByungkodBK) Lee, National Institutes of Health, separation between a pair of residues and ranged from 1 to 4. Each

Rm. 4B15, Bldg. 37, 37 Concent Drive MSC 4255, Bethesda, Marylandelement of these matrices represents the frequency with which a
20892; e-mail: bki@helix.nih.gov. pair of residue types in one protein, separated in the sequence by
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k residues, is replaced by another pair of residue types at the The APP database was prepared from the structural alignments
corresponding position in other structurally homologous proteinsof all known protein domain representativesee Materials and
in a database. The database used was a set of over 10,000 strueethod$ using the structure alignment program SHEBIng &
turally aligned pairs of protein domains prepared recently by usind-ee, 2000. The total number of aligned quartets in the database
a new protein structure alignment program SHE@Ang & Lee,  was 892,724 so that the average number of observations per quar-
2000. tet was 11. However, a large number of quartets were not ob-
Another set of four matricedy, were generated from the same served. The number of matrix elements with low counts are given
database. These are similar to tH§ matrices, except that each in Table 1 fork = 1. The data for othek values are nearly the
element represents the frequency with which a pair of residusame. A similar data from Gonnet et &ll994 are given for
types in one protein is aligned to a residue pair in another proteimeference. The database of Gonnet et al. is nearly twice as large
that has certain defined structural features. The structural featurel, 743,134 aligned quartetsis our APP database. In addition,
of a residue was described by means of a structural pr@iteen-  because of the way we recognize structurally homologous protein
berg et al., 199ythat includes the secondary structural type andpairs(see Materials and methogdsver 85% of the protein pairs in
the polarity of the structural environment of the residue. We usedur APP databasg,306 out of 10,71Roccur in duplicatesA to
16 structural classes so that these matrices were>d@%6 in B and B to A. Duplicated pairs tend to be more structurally similar
dimension. than those that occur only once. For the purpose of comparison
These matrices were tested in a fold recognition settifigcher  with the matrix of Gonnet et al., two counts in our matrix elements
etal., 1996; Miller et al., 1996; Di Francesco et al., 1997; Flocknerare approximately equivalent to one count in those of Gonnet et al.
et al., 1997; Karplus et al., 1997; Levitt, 1997; Marchler-Bauer & Table 1 shows that the Gonnet database produces more matrix
Bryant, 1997; Marchler-Bauer et al., 1997; Rice et al., 1997; Joneslements with no observation and less number of elements with
1999, in which 107 protein sequencg@srobe sequencgselected  high counts, both in absolute counts and in percentages, than the
from the SCOP databas®lurzin et al., 1995 were aligned to a APP database. This is probably because the aligned proteins in the
large panel of proteins of known structure. The structure paneGonnet database are made of highly homologous proteins culled
used contained 3,539 domains that represent all structures in tHfeom a sequence database, whereas those in the APP database
Protein Data BankPDB) database. It included structures that are consist of structurally similar, but not necessarily sequentially ho-
similar as well as unrelated to the probe protein structures, withmologous, proteins. That the latter database consists of less ho-
both high and virtually no sequence homologies. The tests werenologous proteins is also evident from the increased number of
carried out using two computer programs, PA@idir-to-pair align-  mutations observed among the aligned residue quaiTetde 2.
ment of sequence homologgnd PASSQ pair-to-pair alignment To see if the quartet frequencies carry more information than is
of sequence—structure correlatiomhese are FASTA programs available in single pair frequencies alone, ®R&g/p ratios were
(Pearson & Lipman, 1988; Pearson, 1998th a modification in ~ computed, wherR*qg/p = Pq(RR:R'R))/[Pp(RR’) * Pp(R:RY)].
the SSEARCH part of the program that runs the Smith—-WatermaiThe superscripA here is to distinguish this ratio from the “ran-
algorithm(Smith & Waterman, 1981 The modification was made dom” ratio, which will be described shortly?q and Pp are the
only to make the dynamic programming algorithm to use pairs ofprobabilities of finding an aligned quartet or pair types, respec-
residues rather than single residues. PASH uses both the singlirvely, in the database. These were computed as the observed num-
residue substitution Blosum&2enikoff & Henikoff, 1992 and  ber of the quartet or pair types divided by the total number of
HX matrices. PASSC uses tfig matrices in addition to the two aligned quartets, which was equal to the total number of aligned
sets of matrices used in PASH. A number of authors recently usegairs (see Materials and methoddf aligned pairs,R:R’, occur
a combination both the sequence homology and the structural prandependent of each other, i.e., neighboring aligned pairs are un-
file information in fold recognition problemé&Rice & Eisenberg, correlated, the®”q/p will be equal to 1. Figure 1 shows the actual
1997; Jaroszewski et al., 1998; Russell et al., 199& find that  distributions of theR”q/p values for differenk values. The con-
PASH and PASSC perform similarly to FASTA when the probe siderable spread of the distributions indicates that the quartet fre-
and target sequences have more than 30% identity, but that theyuencies indeed carry information that is not present in the single
find significantly more sequences with identities below 30% thatpair frequencies alone.
are structurally homologous. The frequencies of the aligned quartets were compared to “ran-
dom” quartet frequencies. These latter frequencies were obtained
by ignoring the structural alignment and counting all conceivable,
rather than only the aligned, matchesR¥R, type in one protein
andR'R; type in the other in each aligned pair of proteins in the
APP databasésee Materials and methodsThe frequencies of
The HX matrix elements are labeled by a quartet of residue types;random” single pairs were also counted in the similar manner and,
RRR'R;, whereR andR, are the residue types of a pair of residues from these RRqg/p values were calculated for the “random” align-
that arek-positions apart in the sequence of one proteinRnahd ments. The distributions dRRg/p values are also shown in Fig-
Ry are the residue types of the matching residues in another proteire 1. The spread observed in the distribution of “random” quartets
that is aligned to the first. The matrix elements were evaluated bynust result from the high correlation that exists between residue
counting the frequency with which each quartet of residue typesypes of sequence neighbdxsn Heel, 1991 Some of the spread
occurs in an aligned protein paiAPP) database. A matched pair in the distribution of aligned quartets must be also due to this
of residue pairfkRR;:R'R; contributes to both thRRR'R; and the  in-sequence pair correlations. However, the larger spread in the
R'R.RR elements ofHX. This makes the matrices symmetric, distribution of aligned quartets indicates that there are additional
which means that there are only 80,200 unique elements in eaatorrelations between neighboring aligned pairs, over and above
matrix. those between neighboring single residues.

Results

Characteristics of the score matricessH
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Table 1. Number of H matrix elements with low counts

From APP database From Gonnet et(ab94
Number of Number of Number of Number of
observations matrix elements % observations matrix elements %

0 15,811 19.7 0 36,674 45.7
1-2 13,021 16.2 1 13,588 16.9
3-4 9,687 12.1 2 6,870 8.6
5-6 7,609 9.5 3 4,110 5.1
7-8 5,716 7.1 4 2,809 3.5
9-10 4,524 5.6 5 1,932 2.4

11-12 3,617 4.5 6 1,506 1.9
13-14 2,981 3.7 7 1,104 1.4
15-16 2,445 3.0 8 925 1.2
17-18 2,042 25 9 792 1.0
19-20 1,642 2.0 10 686 0.9
>20 11,105 13.8 >10 9,204 115

The score matrix elements were calculated as logarithms of oddthe residue types of a pair of residues thatlapmsitions apart in
ratios,P#/PR, whereP# andPR are the probabilities of finding an the sequence of one protein aBd and E; are the residue envi-
aligned and “random” residue quartet types, respectively, in theonment types of the matching residues in another protein that is
APP database. This is in contrast to Gonnet 18194, who used  aligned to the first. A residue environment type is specified by two
the logarithm ofR”g/p. Use of the single aligned pair frequencies features; the secondary structural type in which the residue is
as the reference is probably good for recognition. Use of “random’found and the degree of exposure to the polar environment, as
(unaligned frequencies is probably better for accurate alignment.measured by the fraction of the accessible surface area of the side
The odds ratio distributions are shown in Figure 2. Fokalhlues,  chain of the residue that is either exposed to the solvent or buried
about 68% of the matrix elements had the odds ratio below 1.0by a polar atom of the protein. There are four secondary structural
Since we use the Smith—Waterman algorithm for alignment, whereitypes, designated ds s, t, andc for helix, sheet, turn, and coil,
negative scores were set to zero, these elements did not participatespectively. The degree of exposure to the polar environment is
in the alignment process. However, more than 65% of all alignedalso classified into four categories, designated as 0, 1, 2, and 3 for
guartets in the database were of the type represented by one of the-25, 25-50, 50-75, and 75-100% exposure, respectively. Thus,
remaining 32% of the matrix elements for &Hvalues. Matrix  there are 4X 4 = 16 residue environment types and the total
elements with large number of observations, Hrfta/p ratio, and
also high scoregodds ratig are listed in Table 3. All are diagonal
elements of the matrices. Gly and, to a lesser extent, Asp and Pro

appear to be the most important residues for correct structural 20000 U= 20000
alignment, since they occur most frequently in this list. !
18000 - : - 18000
k=1
Characteristics of the score matrices T 16000 |- -] 16000
12}
The T} matrix elements are labeled by a pair of residue types andg 14000 | - 14000
a pair of residue environment typeRRE'E;, whereR andR, are =
< 12000} - 12000
R
é 10000 ft - 10000
Table 2. Mutation rates' § 8000 - 8000
[V
]
APP Gonnet et al. 5 6000 H - 6000
=
None 48,426 1,071,219 4000 -14000
One 256,974 506,251
Two 587,324 165,664 2000 — 2000
Total 892,724 1,743,134 0 . 0
00 05 10 15 20 25 30 35 40 45 50
aNumber of quartet®R::R' Rk for which both aligned pairs are the same probability ratio

(none:R = R andR = RY), only one is preservetbne: eitheR = R’ or

R« = RY), or both pairs are differerftwo: R # R’ andR, # R). The second  Fig. 1. Number ofHX matrix elements as a function of the align@wlid
column is for our APP database; the third column is from Gonnet et alline) and “random”(dotted ling quartet to single pair probability ratio,
(19949. Ra/p, each for four differenk values.
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number of X matrix elements is 2 20 X 16 X 16 = 102,400.
Each aligned quartet of residues between two protéirsd B
contributes to two matrix elements: once to the elenfeahd R,
of proteinA andE andE, of proteinB and again to the elemeRt

Table 3. HX matrix elements with odds ratiz-20, probability
ratio >2, and fR > average frequency (2,230)
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andR, of proteinB andE andE, of proteinA. The average number
of observations per matrix element was 17.

The number off} matrix elements with low counts are given in
Table 4. Again, because most of the protein pairs in our APP
database occur in duplicates, we binned the frequency data in steps
of two counts. Column 6 of Table 4 shows that more than 40% of
thek = 1 matrix elements have not been observed. This percentage
is more than twice that for thid, matrix, but similar to the 46% for
the sequence homology matrix of Gonnet et(@hble 1. This is
understandable since the APP database is made of structurally
aligned proteins; many residue pair types are never found aligned
to certain environmental pair types, just as many residue pair types
are never found aligned with certain other residue pair types in
sequentially homologues pairs of proteins. The number of matrix
elements with zero observation decreasek ascreases, which
indicates that the correlation between residue type pair and struc-
tural feature pair decays as the sequence separation between the
pair increases.

The RR:E'E| quartet probabilities were again compared to the
product of theR:E’ single probabilities to see if the quartets carry
more information than contained in the single pairs. Figure 3 shows
the distribution of théeR”q/p andRRg/p ratios. The large spread of
the RRg/p distributions reflects the strong in-sequence correlation
that exists between the environmefpsimarily the secondary struc-
ture but probably also the polar)tpf neighboring residues. The
distribution becomes narrower and more centered around the unity
for largerk values, as expected since the in-sequence correlation
must decrease asincreases. Th&q/p distribution is also broad
and clearly different from the “random” distribution. Thus, as in
the case of the sequence homology, the quartet probabilities are
different from the product of the singles and the difference is over
and above that expected from the in-sequence correlation alone.

The TX matrix elements, like thelkx matrix elements, were also
calculated as logarithms of odds rati®/PR, whereP” andPR

RR:RRE kP Oratic? Pratid’ fAe fR
DG:DG 2 49.1 2.9 878 3,579 20000 20000
GP:GP 2 48.0 2.8 736 3,072
SP:SP 3 315 4.6 443 2,815 18000 - 18000
GD:GD 1 31.3 2.9 890 5,688
FG:FG 3 28.5 2.0 350 2,461 16000 — 16000
PV:PV 2 27.6 2.7 432 3130 4
GG:GG 2 27.4 2.1 1,470 10,737 § 14000 - 14000
DS:DS 1 27.3 4.9 547 4008 § .
LP:LP 1 26.7 25 510 3827 S 120007 - 12000
GG:GG 3 26.6 2.1 1,442 10,844 g 10000 b J 10000
SG:SG 2 23.2 3.1 779 6,722 g fH
DT:DT 3 21.5 2.8 303 2,825 “S" 8000 8000
DT:DT 1 20.4 2.8 298 2922 38 .
DI:DI 1 20.0 26 312 3,124 g 6000 14 6000
aRR:R'R, residue types of the four residues of a matrix element. The 4000 5 4000
residue types are given in one-letter codes.
bk, residue separation. 2000 2000
‘Oratio, odds ratie= P{'/PR whereA = aligned,R = random, and®; = 0

P(RR:R'RY).
dPratio, probability ratio= P{/(P2 * P/), whereA = aligned, P;

P(RR'), andP; = P(RcRY).
ef A, frequency observed in the aligned list. The average frequency over

all types is 11.

probability ratio

Fig. 3. Number of TX matrix elements as a function of the alignelid

ffR, frequency observed in the “random” list. The average frequencyline) and “random”(dotted ling quartet to single pair probability ratio,

over all types is 2,230.

Ra/p, each for four differenk values.
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Table 4. Number of F matrix elements with low counts

Number of matrix elements %
Number of

observations k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4

0 42,601 35,138 31,227 29,562 41.6 34.3 30.5 28.9
1-2 13,594 13,962 14,032 13,764 13.3 13.6 13.7 13.4
3-4 7,706 8,516 8,855 9,018 7.5 8.3 8.6 8.8
5-6 5,148 5,882 6,187 6,440 5.0 5.7 6.0 6.3
7-8 3,743 4,369 4,761 4,889 3.7 4.3 4.6 4.8
9-10 2,862 3,440 3,767 3,857 2.8 3.4 3.7 3.8

11-12 2,291 2,838 3,089 3,325 2.2 2.8 3.0 3.2
13-14 1,983 2,381 2,582 2,699 1.9 2.3 25 2.6
15-16 1,634 2,037 2,193 2,292 1.6 2.0 2.1 2.2
17-18 1,420 1,772 1,989 2,045 1.4 1.7 1.9 2.0
19-20 1,240 1,503 1,709 1,825 1.2 15 1.7 1.8
>20 18,178 20,562 22,009 22,684 17.8 20.1 215 22.2

are the probabilities of finding an aligned and “random” pair of Entropy of the score matrices
pairs,RRE'Ey, respectively, in the APP database. Matrix elements
with large number of observations, hi§g/p ratio, and also high
scoregodds ratig are listed in Table 5. Buried or partially buried
Cys residue type appears most frequently in this list.

Given a score matrix, the average score per aligni@engiven by

> Pfs;, where P{ is the probability of an alignment; is an
element of the score matrix, and the summation is over all the
matrix elements. When the score matrix is defined as base 2 log-
arithm of the odds raticSis also the relative information theoret-
ical entropy of the target alignment in bit unitdltschul, 1991;
Karlin & Altschul, 1997). The entropy values for thelx and Tf
matrices are 0.70 and 0.50, respectively, fokalalues. The value

for the HX matrices is similar to those of PAM1&@ayhoff et al.,

Table 5. T matrix elements with odds ratio-15, probability
ratio >2, and fR > average frequency (3,493)

RR:E'E[ Kb Oratict Pratid’ fAe fRf 1978; Altschul, 1991and Blosum62 Henikoff & Henikoff, 1992,

1993 matrices. The fact thaBis less for theT) than for theHX
AC:c2hl 3 40.6 28.3 723 3,567 matrices indicates that sequence—environment correlation is less
HC:h2h1 1 327 98.0 846 5,187 than sequence—sequence correlation even for the structurally aligned
AH:c2h2 2 27.4 18.5 696 5,085  APP database. The entropy values for theand T, matrices were
VA:sOhl 4 22.4 2.2 419 3,742 gis0 calculated whetid; andT, matrices are the single residue pair
LC:s0s0 2 215 18.6 1032 9623 and single residue—environment pair alignment score matrices, re-
DS:clt2 1 21.1 30.1 657 6,237 . .
YCis1s0 5 202 208 756 7507 spectively, calculated using the same APP database. They are 0.25
AC-s1S0 4 19.4 8.0 371 3:839 and 0.15, respectively. The_ entropy of tHematrix is comparable
DG:cltl 2 17.4 26.6 310 35562 (o thatof the PAM310 matrix and between those for the Blosum35
CV:s0s0 2 17.3 14.0 802 9,296 and Blosum40 matrices. The low value again indicates that protein
TC:s2s0 3 16.8 9.4 522 6,211 pairs in our APP database are not highly sequentially homologous.
GW:s2cl 1 16.0 19.9 333 4,167 The fact that the entropies for thés and TX matrices are signif-
CbD:clcl 3 15.9 30.6 526 6,636 icantly higher than thosél; and T, states that there is a large
VW:slcl 3 15.8 6.9 329 4,166 increase in information content when pairs of pairs are used com-
WG:s1t3 4 15.6 5.8 400 5,148

pared to the single pairs.

aRR:E'Ef, two residue type$RR;) in one protein and a pair of envi-
ronment typesE’E}) in the other, matched protein. The residue types areNumber of correct hits and false positives
given in one-letter amino acid codes. The environntemd defined by a . .
combination of a secondary structural type and the degree of exposure foigure 4 shows the z-scores obtained when each of the 107 probe
solvent and other polar environment. For secondary structural elenhents: sequences was aligned to every protein in the 3,539-protein do-
helix; s, B-sheet;t, turn; ¢, coil. For the degree of exposure to a polar main database using the PASSC procedure. The z-scores are those
environment: 0, 0-25% exposure; 1, 25-50%; 2, 50-75%; 3, 75-100%. ,5a( py the FASTA program and correspond to the ordinary z-score
k, residue separation. . .
°Oratio, odds ratic- P£/PF whereA = aligned,R = random, and; times 1Q plus_50. The maximum z-score was 2,691 f_or_ the 1gfn—
P(RR:E'E)). 2omf pair, which had 100% sequence identity. The minimum was
dPratio, probability ratio= P{\/(P# * P/, whereA = aligned,P, = 20 for the 1pdo—1ksiAQ pair, which were not structurally related

P(':E')fv andp; = Pk()RkiEQa e alianed list T . and had 0% sequence identity after the alignment. The figure shows
all typ’esreigule7ncy observed in the aligned list. The average frequency 0Ve(r:JnIy those with z-scores between 50 and 300. As can be seen from
iR frequency observed in the “random” list. The average frequencythe plot, the z-score distributions do not show significant depen-

over all types is 3,439. dence on the size of the probe. This was achieved because the
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Fig. 4. Z-cores for the 107 probe sequences when each were optimally Serial number after sorting in descending order of z-scores

aligned to all of the 3,539 proteins in the domain database using the PASSC
procedure. The z-scores plotted are those used in FASTA, which correFig. 5. Cumulative number of structurally homologous pairs as a function
spond to the true z-score times 10 plus 50. Z-scores below 50 or above 3@ff the rank in the list of all pairs sorted in descending order of the z-score.
are not shown. Open and closed circles are for the structurally homologoushe protein pairs and their z-scores are for the alignments of 107 probe
and nonhomologous pairs, respectively, according to the structure—structusequences to the 3,539 domains using the FASTA, SW, PASH, and PASSC
alignment by SHEBA. The horizontal dotted line indicates the z-scoreprocedures as indicated, except that the pairs that have more than 30%
cutoff value used in Table 6. sequence identity after structural alignment by SHEBA were omitted. The
Figure shows only the 400 highest scoring pairs. If all structurally homol-
ogous pairs had z-scores higher than any structurally nonhomologous pair,
the diagonal line is expected, since the total number of structurally homol-
ogous pairs is much more than 4Qee Table § The deviation of each
z-scores were computed using a facility in FASTA that corrects forcurve from the diagonal gives the cumulative number of structurally non-

the size of the proteind®earson, 1998nd by the judicious choice homologous pairs.
of the weights in Equation 3 in Materials and methods. A similar
lack of dependence on the size of the probe sequence was seen
when the probes were aligned using the unmodified FASTA, Smith—
Waterman(SW), or the PASH procedures. It is also clear from the false positives with this choice of z-cutoff are given in Table 6.
figure that the pairs with high z-scores are structurally homologousSince pairs with high sequence homology tend to have high z-scores
and that structurally nonhomologous pairs begin to appear as theegardless of the alignment procedure used, we counted the num-
z-score is lowered. ber of correct hits separately for those with less or higher than 30%
To see how the structurally homologous and nonhomologousequence identity. There were 99 pairs with 100% sequence iden-
pairs ranked in terms of the z-scores, the 303,539 aligned tity; these were not counted. Column 3 shows that all alignment
protein pairs were sorted in descending order of their z-scores. Therocedures find essentially the same number of correct hits when
cumulative number of structurally homologous pairs, with lessthe sequence identity is higher than 30%. The number of correct
than 30% sequence identity between the pair, were counted arfuts with less than 30% sequence identity is also the same between
plotted as a function of the rank in the sorted list. The results areghe FASTA and SW procedurd€olumn 4, but it increases by
shown in Figure 5 for the four different alignment procedures. The50% when the PASH procedure is used and more than doubles
figure shows that, in terms of the number of structurally homolo-when the PASSC procedure is used.
gous protein pairs that occur among the top-scoring protein pairs The total number of structurally homologous pairs with less than
of low sequence homology, PASH is indeed clearly better tharB0% sequence homology is 3,339. Thus, the actual number of
either FASTA or SW and that PASSC makes a further improve-correct hits obtained using any procedure is only a small fraction
ment over PASH. of the possible total, indicating that a large number of structurally
Another way to measure the performance of the different align-homologous pairs with low sequence homology have z-scores be-
ment procedures is to count the structurally homologmasrect  low the cutoff value for all procedures. It can also be noted that,
hits) as well as the nonhomologo(false positivespairs that have  even among those with greater than 30% sequence identity, the
z-scores above a cutoff value. Obviously, if the z-cutoff value is sehumber of correct hits is less than the possible total. The eight pairs
high, there will be no false positives, but the number of correct hitswith better than 30% identity, but which did not register as the
will be small. Lowering the z-cutoff value increases the number ofcorrect hits by PASSC alignment, were examined. It was found
correct hits but the number of false positives also increases. Wehat the alignments were essentially the same as the SHEBA align-
chose the z-cutoff value as the lowest z-score that still maintainsnents for all eight cases. However, for seven of the eight cases, the
the number of false positives to less than 2% of the total numbetarget domain was one-third to one-fourth the size of the probe.
of pairs above the cutoff value. The numbers of correct hits andrhus, even though each of these domains was a true structural
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Table 6. Results after threading 107 chains through the 3,539 doniains

Number of correct hits Number of probes with at least one correct hit
z-cutoff %id® = 30 %id® < 30 N;® %id° = 30 %id® < 30
FASTA 128.0 115 84 2 44 46
SW 132.6 115 84 2 44 45
PASH 125.5 116 125 1 44 55
PASSC 125.7 114 183 5 43 62
SHEBA 122 3,33¢! 46° 107

aPairs with 100% identity were omitted.

bNumber of false positives.

CPercentage of identical residues among the aligned residues.

dTotal number of structurally homologous pairs in the specified sequence homology ranges.

€Total number of probe sequences which have at least one homologous structure in the domain database in the specified sequence
homology ranges.

homologue of a part of the probe structure, the part was too smaltarboxypeptidase—lactamaégpte—1blsAl pairs, SHEBA align-
to score high by the FASTA criteria, which obtains scores for thements include large gaps, of 173 and 98 residues long, respec-
global alignment. The eighth protein pair was 1bdo—1fyc, whichtively. The PASSC procedure, being a variant of the FASTA program,
had 33% sequence identity between them and a z-score of 12lises extension gap penalty and does not allow such a large gap.
There were three other domains that had higher z-scores, all dhstead, it aligned the last half of the domain structure to the
which were correct hits for this probe. The z-score cutoff valuestructurally nonhomologous middle part of the probe sequence.
used was obviously too high for this probe. The average alignment shifts produced were 101 and 58, respec-
tively. The other pair was the membrane protein pofidsmf—
1prn), which have a barrel structure made of @&trands. In the
Alignment shifts compared to the structure-structure alignment obtained by PASSC, the barrels were rotated by two
alignment strands relative to each other when compared to the SHEBA align-

The sequence—sequence and sequence—structure alignments BIgNt causing an average alignment shift of 59. The percent se-
tained here can be compared to the structure—structure alignmefi€nce identity increased from 12 to 26% after this rotation.

by SHEBA using the average alignment shift, This latter quan-

tity is defined asir = X Ar;;:/N, wherei andi’ are two residues, Fold recognition in different ranges of sequence homology

one from the probe and the other from the target sequences, which o )

are aligned in the structural alignment by SHEBAY; is the Not surprlsmgly, many_correct hits were found for some probe
number of residues and gaps that separate these residues in ffuences while no hit was found for some others. Since one
alignment by one of the procedures described hiris, the total correct hit is sufficient to identify the fold of a given probe se-
number of aligned residues in the SHEBA alignment, and theduence, the number of different probe sequences represented in the
summation is over alN aligned residue pairs. The distribution of list of correctly hit probe-target pairs .is of interest. Figure 6 sho_wg
Ar values for alignments with less than 30% sequence identity i$n€ number of probe sequences with at least one correct hit in
given for each of the three different alignment procedures in Table 7different ranges of percent sequence identities. It also shows the
In most cases, the alignments obtained by these procedures dféfximum possible number in each sequence range, which is the
essentially the same as those obtained by structural alignments, bi@t@! number of probe sequences with a structural homologue in
there are also some correct hits that nonetheless have very differefite indicated sequence identity ranges regardiess of the z-score.
alignment from what SHEBA obtains. The three cases with the There were 83 probe sequences that had a correct hit with 100%
largest alignment shifts after PASSC alignment were examined iféduence identity. Excluding these self-matches, the number of

detail. In the case of the bacterial luciferadéucA-1xkjB1) and probe sequences with at least one correct hit is small when the
sequence identity is greater than 30% because the domain database

is such that no two domains have sequence identity greater than
50% (Jung & Lee, 2000 In these high sequence identity ranges,

all alignment procedures find essentially the same maximum pos-
sible number of probes. The number is also small when the se-
quence identity is below 10%, despite the fact that most probe

Table 7. Number of correct hitin different alignment shift
(Ar) categories

Ar =5 5< Ar =10 Ar > 10 sequences have at least one structural homologue in these ranges.
This indicates the limited power of the procedures used in this
SwW 64 8 12 study for identifying structural homologues with little sequence
PASH 96 16 13 homology. In the middle range of sequence identities, the number
PASSC 151 18 14

of probe sequences with at least one correct hit is clearly larger
when PASH or PASSC is used than when FASTA or SW is used.
30Only those with less than 30% sequence identities were counted.  For example, for the 20-25% sequence identity range, both FASTA
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Fig. 6. Number of probe sequences that have at least one correct hit in different 5% ranges of percent sequence identity between the
probe and the correct hit target sequences. The alignment procedures used are(¢aSTASW (triangle), FASTA usingH; matrix

(dotted ling, PASH (open circlg, PASSC(solid circle, BLAST (open squarng and PSI-BLAST(solid squarg The curves for FASTA

and SW are nearly identical at all sequence identity ranges. The curve with open diamonds indicates the number of probe sequences
that have at least one structurally homologous pair in the indicated sequence homology ranges, regardless of whether the z-score is
above or below the cutoff value. All curves superimpose exactly when the sequence identity is more than 50%.

and SW find at least one correct hit for 22 probe sequences, com- The recognition rates among different classes of proteins are
pared to 29 and 34 with PASH and PASSC, respectively. Thdisted in Table 8. Surprisingly, the recognition rate was the poorest
corresponding numbers for the 15-20% range are 5, 5, 13, and 18r the a-class proteins, and best for tBeand “other” classes, for
for FASTA, SW, PASH, and PASSC, respectively. Similar data, butall alignment procedures. The structures of thelass probe se-
using only two sequence identity classes, those with higher or
lower than 30% sequence identities, are also given in the last two
columns of Table 6.

.To see if the improvement is due to the use qf the st.ructurally.l.able 8. Recognition rate for each class
aligned protein database or to the use of the pair-by-pair compar-
ison matrices, we also ran the FASTA program using-henatrix
derived from APP. The resultlotted line in Fig. §is very similar

Correct hit§ (%)

to that using the Blosum62 matrix, although there is a hint of aClas$ Total FASTA SwW PASH PASSC
better result at lower homology ranges. It appears, therefore, th%t class 21 7 7 8 9
the main reason for the improvement is the use of the pair-by-paip ¢jass 25 12 12 15 17
score matrices. a/B class 29 14 14 16 17
We also compared the PASH and PASSC procedures to thg+g class 28 11 10 12 15
BLAST (Altschul et al., 199D and PSI-BLAST(Altschul et al.,  Others 4 2 2 4 4

1997 procedures, although this comparison is not a direct test ofy 107 46 45 55 62
the new score matrices since these latter procedures use a different
algorithm for searching for similar sequences. As can be seen in 2SCOP secondary structure classificatioturzin et al., 1995

the inset in Figure 6, PASH and PSI-BLAST perform similarly for  brotal number of probe sequences in each protein secondary structural
this set of test sequences while PASSC performs noticeably bettetlass with at least one correct hit with less than 30% sequence identity.
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quences for which PASSC found at least one correct hit are showlow z-scores have generally low sequence identity between them
in Figure 7A and those for which no correct hit was found in and have negative;, andH; scores, in contrast to those that have
Figure 7B. It is apparent that 10 of the 12 probe chains with noa sufficiently high z-score to be recognized as a correct hit pair.
correct hit have an up-and-down helical bundle structure. It was
found that the probe sequences of this type of structure shared IittIBiSCussion
sequence homology with the domains that were found to be struc-
turally homologous by structure—structure alignment using SHEBAThere are many reasons why one performs a protein sequence
(data not shown The 1llpe—1cgo2 pair given in Table 9 is an alignment, but one main purpose is to identify proteins that have a
example. similar structure to that of a given sequence. Testing a new se-
Table 9 shows the sequence identity andHhg(Blosum63, H, guence alignment procedure for this purpose is a complicated pro-
andT, terms that were used in the alignment score calculation forcess because simply increasing the number of sequences that score
some sample probe-target protein pairs after they are aligned strusignificantly higher than a random match, as is usually done, is not
turally by SHEBA. Two examples were drawn from each second-sufficient. It must be shown in addition that the newly found se-
ary structural class, a correct hit and another that did not registeuences have a similar structure to that of the given sequence
a z-score above the z-cutoff value. It can be seen that the pairs wittBrenner et al., 199&hat involves comparing two structures that

Fig. 7. MOLSCRIPT(Kraulis, 1992 drawings of the structures of theclass probe sequences with at le@st one or(B) no correct
hit with less than 30% sequence identity.
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Table 9. Components of the alignment scores for some sample new matrices, does improve the ability of a sequence alignment
probe and target protein pairs program to recognize structurally homologous proteins. It is not
clear whether a rigorous algorithm can be found. The present,
PDBnames ~ PASST Clas® M° DY Hyp® HY To°  gimple algorithm will work better in a nongapped procedure such
as BLAST than in FASTA. BLAST is probably the procedure of

3sdhA-leca w a 90 11 35 207 198 .

1neu—3hfmH o B 0 14 > 175 168 choice for another.r'easonlelts wélI?e below. .

3chy—1ntr ~ «/8 66 22 50 154 80 The fold recognition ability varies according to the sequence
1kuh—1hfc ,, a+B 83 25 75 260 97 homology. As can be seen from Figure 6 and Table 6, FASTA finds
1lpe~1cgo2 — a 73 6 -65 —-51 18 nearly all structurally homologous proteins when the sequence
1who-1cid-2 — B 73 12 -25 17 102 identity is better than 30%. Therefore, no improvement is made
2rslA-1ah3B3 — a/8 68 18 -6 54 22 with the new procedures in this sequence homology range. How-
1fwp-1mla-2 — atp 87 5 -50 -68 19  ever, all procedures failed to recognize some proteins with partial

structural homology in this high sequence homology range. Ex-
aCheck mark shows when PASSC recognizes the target as a correct higmination of the nature of the failures indicatese Resulisthat

PSCOP secondary structure classificatidurzin et al., 1995 use of a local alignment procedure such as BLA&Ischul et al.,

°Number of str_ucturally matched residues as a percentage of the size 9f990, 1997, as opposed to a global alignment, would have im-
the smaller protein. . ) . .

dPercent identical residues among the aligned residues after SHEBRroved the ability to f|n.d these proteins. Improvement ',S also not
alignment. detectable when there is less than 10% sequence identity. Some of

eThe three score terms in Equation 3, summed ovek-atllues and all ~ the reasons for this lack of success at low sequence homology
aligned residue pairs, calculated after the structure-structure alignment byange have been explored. At least in the case ofattieelical
SHfEB.A'. . ) - proteins, we found that most of the failed cases involve simple

This is a globin shown as the first structure in Figure 7A. . . .

9This protein has the up-and-down helix bundle structure shown as th&/P-and-down helix bundle architectu(€ig. 7B). The structural
third structure in Figure 7B. homologies in these cases appear accidental or to have arisen by

convergent evolution, since sequence homology is low anHithe

andH, scores are actually negatig&able 9. The CASPZMarchler-

Bauer et al., 1997 and CASP3(Koehl & Levitt, 1999 blind
can be only partially or remotely similar. We used the structure—protein structure prediction experiments showed that some se-
structure comparison program SHEBA for this purpose and useduences are easier to predict than others by various fold recogni-
the more or less arbitrary criterion that the number of structurallytion procedures and that the “difficult” cases are usually those that
matched residues be greater than 60% of the number of residueslirave low or no sequence homology. It is not surprising that PASSC,
the smaller protein. Obviously, one can use a different set of cribeing a blend of the sequence—sequence alignment program PASH
teria with equal justification, which can substantially change theand the “profile” method of fold recognitio(Bowie et al., 199},
number of identified sequences. But, it seems unlikely that such also finds it difficult to find structurally homologous proteins at the
change would materially alter the relative performance of the twovery low sequence homology ranges.
new alignment procedures reported herein with respect to the more On the other hand, there is a clear improvement in the “twilight
traditional SW or FASTA procedure. Also, the tests we devised areone” of 10-30% sequence identities. There can be two reasons for
just to test the new pair-by-pair matrices, rather than to asseshis improvement. One is that our APP database consists of protein
PASH or PASSC as new threading procedures, in which case thgairs that are structurally aligned but not too highly sequentially
absolute number of identified sequences would be an importarttomologous. The high mutation rate observed among the aligned
consideration. protein pairs in APRTable 2 and the low entropy of only 0.25 for

The newHX and TX matrices, which involve pairs of amino the H, matrix show this to be the case. Henikoff and Henikoff
acids, are large matrices of dimensions 40800 and 400< 256, (1993 pointed out some time ago that matrices derived from struc-
respectively. Setting up these matrices requires a large databasetofally aligned database tend to perform better than those derived
aligned pairs of proteins, which became available to us only aftefrom sequentially aligned database. However, the fact that FASTA
the fast, large scale structure—structure alignments using SHEBAoes not perform any better using thie matrix than when the
(Jung & Lee, 200D Even with 10,712 aligned protein pairs, the Blosum62 matrix is used indicates that this is not likely to be the
matrices are relatively sparse and contain many elements that aneajor reason. The other, more likely, reason is that pairs of resi-
zero for lack of data. Nevertheless, these matrices contain moreéues contain additional information not present in single residues.
information than the single pair comparison matrices. This can be
seen from the fact that the distribution of pair—pair probabilities is
clearly different from that of the product of single-pair probabili-
ties and from the fact that the entropies for Hieand TX matrices
are much larger than those for thR and T, matrices.

A problem in using these matrices is that the dynamic program-The database used to calculate the scoring matrices consisted of
ming algorithm is no longer rigorous in finding the best alignmentaligned pairs of protein domains of known structure. These were
when pairs of residues are involved. We used a simple algorithnobtained as followgJung & Lee, 200D There were a total of
that will find the optimal alignment when there is no gégee 13,983 protein chains in the March 1998 release of the PDB. These
Materials and methodisbut it will not necessarily find the best were broken into domains using the domain parsing program, PUU
alignment when gaps are introduced. The algorithm must havéHolm & Sander, 1994 After eliminating theoretical models, non-
worked reasonably well since the results reported in Figures 5 andeptides, and domains with less than 40 amino acid residues, there
6 and in Table 6 clearly show that the procedure, along with thevere 18,595 domains. The 18,595 domains were clustered into

Materials and methods

Domain and aligned protein pair databases
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3,539 sequentially homologous groups using a fast version of theanges, respectivel\H; is the single residue homology matrix.

Needleman—Wunsch algorithfheedleman & Wunsch, 197@nd We used the Blosum62 matriHenikoff & Henikoff, 1992 for

the Gonnet scoring matrixGonnet et al., 1992 The smallest H,, since it has higher information entropy than that calculated

protein was selected from each group to represent the group. Thfsom the APP database. Blosum62 matrix is denotedHgsto

set of 3,539 representative proteins is referred to as the domaidistinguish it fromH; calculated from the APP databadeX is

database. the k-type pair-to-pair sequence homology matrix, of dimension
The structure—structure comparison program SHEBA was rum00 X 400. TS is a k-type pair-to-pair sequence—structure corre-

between all pairs of these domaiflsing & Lee, 200Dand those lation matrix of dimension 40X 256. The value ofi in Equa-

pairs that met the following criteria were selectéd: The number  tions 2 and 3 was four.

of structurally matched residues is greater than 40 in absolute To obtain the matrice$is and T, two k-type residue pair—

number and greater than 50% of the residues in the larger proteipair lists were prepared from the APP database for éaciue.

of the pair;(2) Z-score is greater than 4.0. The z-scarg, be- A k-type residue pair is a pair of residues that &reesidues

tween a probe sequeneeand a target sequenbewas calculated apart in a sequence. One list consisted of all the aligned pairs of

using the number of matched residues betweeandb relative to  k-type residue pairga k-type residue pair from one sequence

the average number of matched residues betveeand all other  aligned to another pair from the second sequgrineall the

proteins in the domain database; &3 the number of identical protein pairs in the database. The residues that were aligned to a

residues after the structural alignment is between 10 and 40% afjap were not counted in calculating tkevalue for this list. The

the matched residues. There were 10,712 pairs that met all of tHength of the list was made the same for ki/alues by not

above criteria. Many of these are duplicatesb andb-a pairs, counting the quartets whose first pair falls within four residues

but some pairs with less structural homology occur only once. Thigrom the C-terminus of each protein. The second list was much

set of domain pairs is referred to as the aligned protein (g&iP) larger and consisted of a concatenation of(all — 4) = (n, — 4)

database. pairs ofk-type residue pairs per each protein pair- p’, where

ne andn, are the numbers of residues in the protginand p/,

respectively. Occurrence of gaps was ignored in making this list.

These two lists are referred to as the aligned and random

The total alignment score between a pair of proteins was calculatetype) residue pair-pair lists, respectively.

as the sum of the individual contributioas made by each pair of The HX matrix was obtained by

aligned residuesd, of one sequence arid of the other sequence,

minus the opening and extension gap penalties. The contribution H¥ = In[PA(RR; R'R,)/PR(RR.; R'RL)], (4

a;» was calculated as

Score function

whereinP” andPR were the normalized frequencies with which a
residue pair of the amino acid typ&and Ry is found paired to
another residue pair of the amino acid typgandR; in thek-type
aligned and random residue pair—pair lists, respectively. Similarly,
the TX matrix was obtained by

a;r = Hy(Ri; Riv) D
in the FASTA and Smith and Waterm&8W) alignments,

n
air = Hi(R;Riv) % 0.25+ > HY(R_«Ri; R —«R/) 2
k=1 T = In[PA(RR,; S'P'S;PL)/PR(RR; S'P'S(Py)], ©)
in the PASH procedure, and whereinP” andPR were the normalized frequencies with which a
N residue pair of the amino acid typ&and Ry is found paired to
air = Hi(R;Ri) #0.20+ S HX(R_«R;R_«Ri") another residue pair which have the_secondary stru_ctural $pes
k=1 and S; and polarity range$’ and Py in the k-type aligned and
random residue pair—pair lists, respectively.

For the purpose of calculating the entropy, theand T, ma-
trices were constructed in a similar manner, but using single pair
frequencies. The total number of single pairs was made the same
in the PASSC procedure. In these expressioremdi’ indicate  as that of the quartets by not counting the pairs that are within four
positions of matched residues in the two sequencesRyng ~ residues from the C-terminus of each protein.
and P, with various subscripts indicating the position of the
residue, represent the amino .aC|d type, se(.:ondary structural typﬁﬁgnment procedure
and polarity type of the residue, respectively. There are four
values for the secondary structural type, corresponding to helixDefault values were used for the gap penalties and the statistical pa-
sheet, turn, and coil. A secondary structural type was assigned t@meters as given in the FASTA progréRearson & Lipman, 1988;
each residue using the DSSP progréfabsch & Sander, 1983  Pearson, 1998The alignment routine in the FASTA packager-

The polarity type refers to different ranges of polarity of the sion 3.0t77, downloaded from the ftp site ftfftp.virginia.edy
environment of the residues. The latter is defined as the fractiopuby/fasta was replaced with the Smith—Waterman algori{t8mith

of the accessible surface area of a residue that is exposed ® Waterman, 1981 given in the same package and then modified
solvent or buried by a polar atorfBowie et al., 1991; Jung & to use thédx andTX matricessee below. The different weight val-

Lee, 2000. Again, four values were used for the polarity type, ues shown in Equations 2 and 3 were chosen to make the total score
corresponding to 0-25, 25-50, 50-75, and 75-100% polaritysimilar in magnitude to those obtained when Equation 1 was used

n
+ > TR «R;S P «S/P) 0.6 ©)
k=1
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Table 10. 107 probe proteins
laaj- 1afi- lako- laps- 1bdo- 1ble- 1bplB lctj- 1dcoA ldraA
le2b- lexg- 1frd- 1fwp- 1gky- 1lguaB 1lhcd- 1hihA 1hxn- 1lbd-
1lfaA llpe- 1ltsD llxa- 1midA 1mrj- 1nciA 1ngr- loccE 1pdo-
1pil- 1pyp- 1rhgA 1rtml Lryt- 1std- 1tig- 1tphl lubi- 1vid-
1vtmP 1who- 256bA 2bopA 2cpl- 2fcr- 2hmgA 2omf- 2rslA 2vik-
3cla- 3pte- 3sdhA 4rhn- labv- laihA laly- larb- 1bfmA 1bmfG
1chd- lcus- 1ldorA 1dupA lecmA 1fapB 1gdoA 1gmpA 1lhbp- lhcl-
lhme- 1kuh- 1IcjA 1lit- llre- llucA Imai- 1molA lnall lneu-
1nulA 1pdgA 1phr- 1pne- 1rgp- 1ris- 1rwA 1sriA 1tfr- 1tml-
1tul- 1vhrA 1vmoA lwba- 1zin- 2astr- 2chsA 2ctb- 2fgf- 2mem-
2rn2- 2trxA 3chy- 3pgm- 3rubS 4icb- Trsa-

with the Blosum62 matrix. In the PASSC procedure, gaps were nogreater than 60% of themallerprotein. This second criterion was

allowed in helices and beta strands.

used to recognize partial, as well as full, structural matches.

The dynamic programming algorithm for finding the optimum  The sequence homology was considered to be low if the number
alignment had to be modified to use scores that depend on twof identities was<30% of the structurally aligned residues. The
aligned residue pairs instead of just one pair. In the forward movnames of the 107 probe sequences selected by this procedure are
ing Smith—-Waterman algorithiSmith & Waterman, 1981 best  given in Table 10.
alignments for the subsequences 1 to 1 of one sequence and 1
toj — 1 of the other are known, for all possible overhang lengths
at the time the score is calculated for aligning the residweesl].
The modification consists of using this known upstream alignmeniThe BLAST runs were made for each test protein sequence against
to find the residue and environment types of the aligned residug¢he 3,539 structures in the domain database. The PSI-BLAST runs
pair, k-positions upstream, for each overhang. Gaps were considaere made for each test sequences against the Swiss-Prot protein
ered like a residue in counting thevalue. This information and sequence database. A BLAST run was then made for each of the
the corresponding information for the— j pair are used to cal- hits obtained against all the PDB sequences to identify the hit
culate the pair-to-pair alignment score for each overhang. The besequences for which the structure is known. The Blosum62 matrix
score, after subtracting the gap penalty appropriate for the overand default settings were used for both procedures. The number of
hang, is assigned to the- j residue pair. This procedure finds the false positive BLAST hits, using the same SHEBA criteria for the
best nongapped alignment, but it does not guarantee finding thetructural similarity, was 3% for the BLAST and 0.8% for the
best global alignment when it contains gaps. A rigorous algorithmPSI-BLAST runs. The low false positive rate for the PSI-BLAST
for finding the true globally optimum alignment using these pair- run is probably due to the fact that the second stage BLAST runin
by-pair score matrices is not known at the present time. this procedure was run against all PDB structures rather than against
the domain database. Running against all PDB increases the num-
ber of correct but essentially duplicate hits, which in turn reduces
the false positive rate. The numbers plotted in the inset of Figure 6
To test the new score matrices. each of a set of probe se ian:Iude only those for which there was at least one true positive, as

“ o P quences;dlne case for all other procedures.
known structure were “threaded” through each structure in the
domain database. The test consisted of scoring how many of
the target proteingdomains that are structurally homologous to Acknowledgments
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probe sequences selected were the first members of each family Yailable and Dr. Shrish Tiwari for running the BLAST and PSI-BLAST
the October 1996 release of the SCOP datalfddarzin et al.,  tests. We also thank Mr. Joe J. Cammisa for his assistance with the com-
1995, which were between 60 and 350 residues in length anduter system support and other members of the Laboratory for numerous
which had at least one structural homologue of low sequence hd(ijiz‘r::;r?iOi‘osua;‘gof;“iggsnm;u J?,ZZSL;] jUﬁi%;ha”ksozg?]f:rsz?rtshgrig]‘zri?c';nw-
mology in the domaln datqba;e. o Univers’ity for their gncouraggeme’nt. '

We used two different criteria for deciding whether a probe and
a domain were to be considered structurally homologous. For the
purpose of selecting the probe sequences, a domain was considerf@gferences
to be a structural h0m0|Ogue_lf the number of matched reSIdueiltschul SF. 1991. Amino acid substitution matrices from an information theo-
after the structure—structure alignment by SHEBA was greater than retic perspectiveJ Mol Biol 219555-565.
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determining true and false positives after threading, the criterion use

! X 1997. Gapped BALST and PSI-BLAST: A new generation of protein data-
was that the number of matched residues by SHEBA alignmentwas base search programisucleic Acids Res 23389-3402.

'BLAST and PSI-BLAST runs

Selection of the test set of proteins
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